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Abstract

The subsonic spectrum of complex velocity versus real frequency in immersed anisotropic plates is
considered for the various options of presupposed choice of modes in the loading fluid half-spaces. Two
principal implications of the latter prerequisite are investigated. The first is related to the family of flexural-
type branches (with origin at v ¼ 0; k ¼ 0), which evolve from the so-called A0 and A1 free-plate branches
in a way that depends on the choice of fluid modes. By inspecting the low-frequency solutions of the
dispersion equations corresponding to the different choices of fluid modes, a complete set of the flexural-
type branches in an anisotropic fluid-loaded plate is identified. The result generalizes and also rectifies the
interpretation commonly adopted for the isotropic case. The second issue is concerned with the real-valued
loops on otherwise complex subsonic branches, involving the fluid mode increasing away from the plate.
This phenomenon has been broadly discussed in numerical and experimental works on isotropic plates. The
topological origin and shape of the real loops for an arbitrary plate can be readily viewed by way of the
graphical layout of the sextic plate formalism. To this end, three possibilities are considered, namely,
the sound velocity in the fluid, cf ; being (i) less than the Rayleigh velocity, (ii) greater than that but less than
the bulk-wave threshold in the plate, and (iii) greater than the bulk-wave threshold. These lead to three
basic configurations. In case (i), a closed real loop exists provided than the fluid-to-solid density ratio is
smaller than a certain critical value, estimated here in a simple explicit form. Case (ii) is typically
characterized by the presence of two open real-valued arches with common high-frequency limits. Case (iii)
produces an infinite sequence of progressively narrowing real-valued arches, whose upper arms rise up to cf

and then transform into descending curves of solutions associated with the decreasing fluid modes (akin to
see front matter r 2005 Elsevier Ltd. All rights reserved.
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the Sezawa continuum). A general overview of the locus of looping branches is supplied by analytical
estimates and numerical examples.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Ultrasonic inspection of fluid-loaded solid plates is one of the primary techniques of non-
destructive testing and evaluation [1,2]. An immersed plate is insonified by means of concentrated-
source loading or reflection/transmission, and information about its material characteristics is
obtained by referring the acoustic response, one way or another, to the dispersion spectrum of
plane guided waves (the plate eigenmodes). Knowledge of the spectrum properties is therefore
essential for successful interpretation of the experimental data. In particular, the asymptotics for
the fundamental branches in plates and beams have been broadly studied with regard to various
applications in structural dynamics, see e.g. recent publications [3–6].
The dispersion spectrum of a lossless plate immersed in a non-viscous fluid may be represented

in the form of real and complex branches of trace velocity vðoÞ depending on real frequency.
Taking o as a real parameter fits with those experimental techniques in ultrasonics, in which the
spatial rather than temporal aspect (see Refs. [7–9]) is most significant. The spectrum depends on
the presupposed choice of the partial mode in the fluid half-spaces which may be taken as either
decreasing or increasing into the fluid depth. Formally, boundary conditions on the plate–fluid
interfaces may be posed for any fixed choice of the fluid mode, thus leading to different forms of
the dispersion equation and ensuing velocity branches. For instance, the subsonic velocity range
(i.e. below the speed of sound cf in the loading fluid) contains the A and S real velocity branches,
which correspond to the choice of decreasing fluid modes on both sides of the plate, and the A0

complex velocity branch that involves increasing fluid modes. The (real part of) A0 branch
continues into the supersonic interval (above cf ), joining the continuum of complex branches of
the leaky waves. It is evident, yet noteworthy, that the dispersion equation incorporating either
both decreasing or both increasing fluid modes can yield a real velocity only below cf but not
above (apart from the locus of points v4cf , at which the fluid plate are uncoupled), and that any
one of these alternative choices may lead to real or complex subsonic velocity solutions.
The flexural-type A and A0 branches, starting off at zero velocity and zero wavenumber,

supersede the flexural branch A
ðfreeÞ
0 of the unloaded (free) plate. This transformation, usually

referred to as a split of A
ðfreeÞ
0 ; is precipitated in the low-frequency vicinity of the origin branching

point, where the fluid-loading effect is predominant. The intricacy of the onset of flexural-type
branches was highlighted in the seminal paper on fluid-loaded isotropic plates by Osborne and
Hart [10], which has underpinned the interpretation of an abundant numerical data accumulated
since then. It is, however, notable that the low-frequency asymptotics attributed in Ref. [10] to the
A and A0 branches were derived from the same dispersion equation, although those branches
imply different types of fluid mode. This leaves open a question as to how the choice of fluid
modes is actually involved and should be handled in this instance. One more questioning point is
that the theoretical framework established in Ref. [10] misses out another flexural-type branch,
which evolves on fluid loading from the (pure imaginary) A

ðfreeÞ
1 branch descending in the free plate

from the first thickness resonance. In a broader perspective, the overall objective is to trace a
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complete set of the flexural-type branches, arising in an arbitrary anisotropic immersed plate,
taking into account the various choices of the fluid modes.
Another intriguing feature of the subsonic spectrum concerns the possibility of a real-valued

loop on the A0 branch. The closed loop for brass and aluminium plates under light-fluid
loading, and its shrinking on increasing the density ratio value rf =r; has been demonstrated
numerically in Refs. [11,12]. This observation was used to suggest the reason why the same loop
did not appear in the calculations, performed in Refs. [13–15] for isotropic plates immersed in
water. Some useful data are presented in Ref. [16], where the arguments in favour of the loop
existence and the criterion for this were sought by means of scrutinizing numerical results for
various isotropic plate materials and loading fluids (all with cf less than the Rayleigh velocity vR in
the plate). The debate on the accuracy of the implemented numerical routines (see Refs.
[12,16,17]) has resolved at the conclusion that the A0 real loop is certainly not an artefact. At the
same time, an unequivocal explanation of its origin and explicit criterion for its occurrence in an
arbitrary immersed isotropic plate (not to mention anisotropic ones) have not been established.
This is certainly impossible within a pure numerical approach. In fact, the problem has been dealt
with analytically in earlier papers on thin isotropic plates [18–20], where the pairwise real
solutions vA0

ocf ðovRÞ were identified explicitly; however, an investigation of the locus of these
roots and the existence considerations were beyond the scope of those papers. Developing an
analytical description of the A0 real loop in the cfovR setting, including the general case of
anisotropic plates, is hoped to facilitate the challenging task of experimental observation of this
loop; see Refs. [21,22].
The subsonic velocity spectrum undergoes some drastic changes when cf exceeds the Rayleigh

velocity vR: Wave properties arising for various isotropic solids and loading fluids realizing the
case cf 4vR have been studied recently [23–26]. A particularly striking feature, the arch of real A0

velocities with a changeover point at vA0
¼ cf to the branch of solutions involving the decreasing

fluid modes, was observed numerically and experimentally for a water-loaded Plexiglas plate in
Ref. [26]. This finding further motivates the search for a general understanding of the real-valued
loops formation, one that would enable predictions of the looping branch occurrence and shape
for arbitrary immersed plates. The problem certainly becomes much more involved in the case of
anisotropic plate materials, but it turns out that there is a fundamental topological clue
circumventing direct calculations.
The present paper aims to establish a clear picture of the family of flexural-type branches

associated with various choices of the fluid modes, and of the real-valued loops occurring
at cf ovR and vRocf ; for the general case of fluid-loaded plates with unrestricted anisotropy.
An efficient analytical tool for this is provided by the sextic plate formalism, developed in
Refs. [27,28] and further elaborated in this paper. On this basis, the genesis of the flexural-
type branches from the free-plate limit is traced, and their low-frequency onset is unravelled.
The conditions underlying the existence of the real-valued loop on the A0 branch at cf ovR are
revealed, and its parameters are quantified analytically in a simple explicit form. The locus
of looping real-valued branches arising at vRocf is identified, and its invariant features for
arbitrary anisotropic plates are established. The derivations are compared with the computer
calculations performed for various materials. This paper is focused on the subsonic range of the
dispersion spectrum, whereas the study of its supersonic domain is reserved for a companion
paper [29].
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2. Theoretical background

Consider an arbitrary anisotropic homogeneous lossless plate with a thickness 2h; density r and
elasticity tensor c. Introduce the coordinate system X ;Y ;Zf g with the axis Y along the unit
normal n to the plate faces, and denote the unit vectors along X and Z by m and t, respectively
(Fig. 1). The aggregate displacement and traction for the packet of plane modes, propagating
along the direction mkX in the plate material, are assumed in the form

u

ik�1nr

� �
¼ nðyÞ exp½ikðx� vtÞ�; nðyÞ �

AðyÞ

LðyÞ

 !
, (1)

where k is the tangential wavenumber, v ¼ o=k is the trace velocity (which may be complex and
hence different from the phase velocity), and o ¼ 2pf is the angular frequency. The Stroh
formulation of the state-vector or sextic approach [30–33] incorporates the equation of motion
and the stress–strain law into the first-order ordinary differential system

ikNðvÞnðyÞ ¼
dnðyÞ

dy
, (2)

with the 6� 6 matrix

NðvÞ ¼
�ðnnÞ�1ðnmÞ �ðnnÞ�1

mmð Þ � ðmnÞðnnÞ�1ðnmÞ � rv2I �ðmnÞðnnÞ�1

 !
�

N1 N2

N3 � rv2I NT
1

 !
, (3)

where T indicates the transpose, I is the identity matrix, and abð Þjk ¼ aicijklbl for a; b ¼ m or n:
The latter notation [31] allows writing the 3�3 contractions of cijkl and mi; nk in the basis
X 1;X 2;X 3f g of an arbitrary orientation with respect to the axes X ;Y ;Zf g ¼ m; n; tf g. By Eq. (2),

nðhÞ ¼Mðh;�hÞnð�hÞ; Mðh;�hÞ ¼ exp 2ikhNðvÞ½ � �
M1 M2

M3 MT
1

 !
. (4)

For future use, also introduce the admittance Y:

Að�hÞ

AðhÞ

 !
¼ iY

Lð�hÞ

�LðhÞ

 !
; Y ¼ �i

�M�13 MT
1 �M�13

M2 �M1M
�1
3 MT

1 �M1M
�1
3

 !
, (5)
Y

X

Z

h

-h

n

t
m

fluid

fluid

plate

Fig. 1. The geometry of the problem.



ARTICLE IN PRESS

A.L. Shuvalov et al. / Journal of Sound and Vibration 290 (2006) 1175–1201 1179
which for real v; k is a Hermitian matrix [27]. In the present study, v and k may be complex:
v ¼ v0 þ iv00, k ¼ k0 þ ik00; whereas o is set to be real (and positive). For the latter reason,
it is suitable to refer henceforth to the ðv;oÞ-parametrization (rather than ðv; kÞ; as in
Refs. [27,28]).
Let the plate be immersed in a non-viscous compressible fluid with density rf and speed of

sound cf . Partial modes propagating in the upper and lower fluid half-spaces f 1 and f 2,
respectively, are taken in the form

uf a ¼ Cf aðmþ pf anÞ exp½ikðxþ pf ay� vtÞ�; a ¼ 1; 2, (6)

where Cf a are scalar amplitudes and p2f aðvÞ ¼ v2=c2f � 1: Each parameter pf a (a ¼ 1; 2) lies on one
of the two Riemann sheets n ¼ 1; 2 of the square root

SðnÞðvÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2=c2f � 1Þei2pðn�1Þ

q
. (7)

Let the argument of v2=c2f � 1 vary from 0 to 2p, i.e. the cut separating these sheets is defined by

the equation Im
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2=c2f � 1

q
¼ 0, so that ImSð1Þ40, ImSð2Þo0. The properties of a fluid mode

with its parameter pf a taken on one or the other Riemann sheet are elucidated in Table 1. There,
the mode type is characterized by the orientation of its wave vector kf a ¼ kðmþ pf anÞ ¼ k0 þ ik00,
where k0 is parallel to the energy flux and the sign of k00 � n determines increasing/decreasing into
the fluid depth. Thus, prescribing either decreasing or increasing modes into the fluid on both
sides of the plate (‘symmetric choice’, pf 1 ¼ �pf 2) leads, respectively, to

pf 1 ¼ ðsgn v0ÞSð2Þ ¼ �pf 2 ¼ �ðsgn v0ÞSð1Þ, (8)

or to

pf 1 ¼ ðsgn v0ÞSð1Þ ¼ �pf 2 ¼ �ðsgn v0ÞSð2Þ, (9)

where sgn v0 ¼ �1 at v0_0: It is noted that the decreasing and increasing modes cannot be

adequately distinguished in general by relating the modes merely to the sign of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2=c2f � 1

q
.

Proceeding from the standard boundary conditions at the plates–fluid interface, the dispersion
equation can be expressed in the form

Y
ðnÞ

1 �
ipf 1

rf v2

" #
Y
ðnÞ

1 þ
ipf 2

rf v2

" #
¼ Y

ðnÞ

2 Y
ðnÞn

2 , (10)

where

Y
ðnÞ

1 ¼ in.M�13 MT
1 n; Y

ðnÞ

2 ¼ in.M�13 n (11)

(see Eq. (5)), and * means complex conjugation of the function Y
ðnÞ

2 but not of its arguments (if,

say, Y
ðnÞ

2 ¼ Y
ðnÞ

2 ðv; kÞ; then Y
ðnÞn

2 � Y
ðnÞn

2 ðv; kÞaY
nð Þn

2 ðv
n; kn
Þ and Y

ðnÞ

2 Y
ðnÞn

2 ajY ðnÞ2 j
2 for complex

v; k). The derivation of Eq. (10) is the same as in Ref. [28], except that now v; k may be complex
and the choice of modes is not yet fixed. By Eqs. (8) and (9), taking either the decreasing or
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Table 1

Correspondence between the type of the fluid mode (6) at real o and the affiliation of its y-dependence parameter pf a to

one of the Riemann sheets of the square root S nð Þ (7) with the cut such that ImSð1Þ40; ImSð2Þo0. With reference to Fig.

1, the symbol j n in the last column implies decreasing mode for fluid 1 and increasing mode for fluid 2; the symbol j =
implies increasing mode for fluid 1 and decreasing mode for fluid 2

Note: The values Sð1;2Þin the limit v00 ! 0:

v00 ! �0 : Sð1Þ ¼

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v02=c2f � 1

q
þ i0; v04cf

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v02=c2f � 1

q
þ i0; jv0jocf ; v00 ! þ0 :ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v02=c2f � 1
q

þ i0; v0o� cf

8>>>>><
>>>>>:

Sð1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v02=c2f � 1

q
þ i0; v04cf

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v02=c2f � 1

q
þ i0; jv0jocf

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v02=c2f � 1

q
þ i0; v0o� cf

8>>>>><
>>>>>:

Sð2Þ ¼ �Sð1Þ.

A.L. Shuvalov et al. / Journal of Sound and Vibration 290 (2006) 1175–12011180



ARTICLE IN PRESS

A.L. Shuvalov et al. / Journal of Sound and Vibration 290 (2006) 1175–1201 1181
increasing modes into the fluid on both sides specifies Eq. (10), respectively, as

Y
ðnÞ

1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y
ðnÞ

2 Y
ðnÞn

2

q
� ðsgn v0ÞY f

� �
Y
ðnÞ

1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y
ðnÞ

2 Y
ðnÞn

2

q
� ðsgn v0ÞY f

� �
¼ 0, (12)

or

Y
ðnÞ

1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y
ðnÞ

2 Y
ðnÞn

2

q
þ ðsgn v0ÞY f

� �
Y
ðnÞ

1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y
ðnÞ

2 Y
ðnÞn

2

q
þ ðsgn v0ÞY f

� �
¼ 0, (13)

with the fluid admittance

Y f ¼ �
iSð1Þ

rf v2
, (14)

where Sð1Þ stands for the value of the square root
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2=c2f � 1

q
taken in the first of the above-

defined Riemann sheets. A reference to the sign of v0 is essential for sorting out the flexural-type
solutions near the branching point v ¼ 0: This implication apart, it is natural indeed to fix v040.
For real vocf , in particular, Y f ðvÞ by Eq. (14) is

Y f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2f

q
rf v2

. (15)

Note that the factorized form of Eqs. (12) and (13), valid for arbitrary anisotropy of the plate,
should not be mistaken for the factorization into equations for symmetric and antisymmetric
branches in the presence of a symmetry plane parallel to the plate faces (see Ref. [1]; a link to the
latter setting is discussed in Ref. [28]). In the case of a plate which is fluid-loaded on one side while
free of traction on the other, the dispersion equations (12) and (13) simplify to the form
Y
ðnÞ

1 � ðsgn v0ÞY f ¼ 0.
A remaining possibility is to choose the increasing fluid mode on one side of the plate and the

decreasing mode on the other side (‘antisymmetric choice’, pf 1 ¼ pf 2). In this case the dispersion
equation (10) specifies

Y
ðnÞ

1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y
ðnÞ

2 Y
ðnÞn

2

q� �
Y
ðnÞ

1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y
ðnÞ

2 Y
ðnÞn

2

q� �
� Y 2

f ¼ 0, (16)

where Y f may be associated with any one of the Riemann sheets Sð1;2Þ. This is because the two
options implied by the antisymmetric choice are indeed interchangeable as long as the fluid is the
same on both sides of the plate. The modes in the upper and lower fluid half-spaces correspond to
the same partial mode (any of the twos) in the infinite fluid, and it is therefore clear that Eq. (16)
coincides with the condition of zero reflection (for inhomogeneous waves, if vocf ).
The advantage of expressing the problem through the sextic plate formalism is that it endows

the ‘plate terms’ of the dispersion equation with some significant analytical properties. We shall
briefly summarize those that are relevant to the present study (omitting certain peculiarities).
Denote by v̂jðoÞ the (real) velocity branches j ¼ 1; 2; . . . for the traction-free plate (Lð�hÞ ¼ 0),

which are defined by the dispersion equation detM3 ¼ 0: By Eq. (11), Y
ðnÞ

1 ðv;oÞ and Y
ðnÞ

2 ðv;oÞ
diverge along v̂jðoÞ and, for any fixed o, the poles v̂j are of the first order except for the folding
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points on v̂j (zeros of the in-plane group velocity). For real v;o, the function Y
ðnÞ

1 ðv;oÞ is strictly

real-valued, and, by definition, so is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y
ðnÞ

2 Y
ðnÞn

2

q
¼ jY

ðnÞ

2 j. The residues of (complex) Y
ðnÞ

2 ðv;oÞ at

the poles v̂jðoÞ differ from that of (real) Y
ðnÞ

1 ðv;oÞ only by a phase factor (of unit absolute value);

therefore, one of the functions Y
ðnÞ

1 � jY
ðnÞ

2 j is singular at v̂jðoÞ, while the other is smooth.

Moreover, Y
ðnÞ

1 � jY
ðnÞ

2 j are positive at v ¼ 0 and represent monotonically increasing functions of v

in a cut by any fixed k40. The latter property is no longer valid in the cuts by a fixed o; however,
the functions Y

ðnÞ

1 � jY
ðnÞ

2 j of v 40ð Þ still have positive residues at the poles v̂j ; given that the in-
plane group velocity at v̂j is positive as it is presumed henceforth for subsonic v̂jðoÞocf (this
aspect is to be developed in Ref. [29]). It is also noted that, with o being fixed, the values

Y
ðnÞ

1 � jY
ðnÞ

2 j change sign on inverting sign of v (in no contradiction with their positiveness at

v ¼ þ0; for, k changes from þ1 to �1 on v passing zero), thus confirming sign invariance of the
velocity solutions of Eqs. (12), (13) and (16). For o!1 and the velocity below the plate’s bulk-

wave threshold, both functions Y
ðnÞ

1 � jY
ðnÞ

2 j tend exponentially fast to the same limit, which is the

Lothe–Barnett normal admittance (inverse impedance) of the solid half-space Y ðnÞ1 ðvÞ;
monotonically increasing and having a pole at vR [31,34].
Knowledge of these topologically invariant features of the ‘plate terms’ of the dispersion

equation allows a transparent graphical way to pinpoint its real solutions at an arbitrary fixed o
(or k) and thereby to envisage corresponding real velocity branches. Let us exemplify how it
works for identifying the real A and S subsonic velocity branches, involving the decreasing fluid
modes. By Eq. (12) referred to real v40, the sought branches are the intersections of the ðv;oÞ -
parametrized surfaces Y

ðnÞ

1 � jY
ðnÞ

2 j with Y f given by Eq. (15). A cut by a fixed o, taken to be low
(to add analytical estimates), is drawn in Fig. 2. It shows two topologically ‘pinned’ crossings,
which are the points on the A and S branches for a given o. Similar cuts by growing o indeed
Fig. 2. A juxtaposition of the curves Y
ðnÞ

1 � jY
ðnÞ

2 j (thin line) and Y f (bold line) as functions of real v at a fixed low o
(
ffiffiffiffiffiffiffiffiffiffiffi
2koh
p

� 1; see Eq. (19)). The sign beside a ‘plate’ curve indicates the sign in its definition; cIJ signifies certain

combinations of elasticity coefficients (unspecified for brevity), and scale is not observed. The intersection points of the

curves correspond to the A and S velocity solutions at a given o.
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contain the same fluid curve Y f ðvÞ, whereas the curves Y
ðnÞ

1 � jY
ðnÞ

2 j in each next cut come closer to

one another within the velocity interval below the plate’s bulk-wave threshold, and

simultaneously the poles v̂1;2ðoÞ (points on the free-plate branches A
ðfreeÞ
0 ; S

ðfreeÞ
0 ) approach vR.

The limiting configuration in the cut by o!1 evolves into the pattern with Y f ðvÞ and the
normal admittance Y ðnÞ1 ðvÞ of the half-space, which has been utilized in Ref. [34] to visualize the
Scholte interfacial-wave velocity vSch. In view of these successive ‘snapshots’, it is immediate to
figure out the entity of the A andS branches and identify some fundamental properties invariant
to the plate anisotropy, e.g., that the full stretch of the A and S branches must be bounded from

above by the A
ðfreeÞ
0 and S

ðfreeÞ
0 branches, respectively. A similar approach will prove useful for

identifying the loops of real-valued solutions related to the choice of increasing fluid modes. The
complex-valued solutions cannot be spotted as easily; however, their approximate analytical
estimates are also substantially facilitated by the outlined sextic plate formalism.
Unless otherwise specified, the forthcoming considerations are concerned with the general

case of arbitrary plate anisotropy. In particular, there is no assumption of a symmetry
plane parallel to the plate surfaces which leads to factorization of the dispersion equation into
two for symmetric and antisymmetric branches. It is, however, convenient to retain the
conventional A and S labelling of the branches, as long as it does not create ambiguity. These
notations are going to be used on an equal footing with vjðoÞ. It is recalled that the velocities
for a free plate are labelled by a hat, i.e. v̂jðoÞ. Note also that the SH (shear horizontal)
non-dispersive branch, which comes about in both free-plate and immersed-plate spectra when
the sagittal plane m; nð Þ coincides with a symmetry plane of the plate, is not a pole for the

functions Y
ðnÞ

1;2 and thus does not show up on their graphical display. In this case, the notation

v̂2ðoÞ (or S
ðfreeÞ
0 ) will be assigned to the upper, dispersive fundamental branch; whereas in

the absence of SH-uncoupling, when both upper fundamental branches in the free plate are
dispersive, the notation v̂2ðoÞ implies the lower of the branches, while v̂3ðoÞ is reserved for the
upper one.
3. The nomenclature and low-frequency onset of the flexural-type family

3.1. The flexural-type branches for the symmetric choice of fluid modes

This section is concerned with the velocity branches, which originate at v ¼ 0; k ¼ 0
(hence, o ¼ 0) and in this sense are referred to as the flexural-type ones. It is noted that this
definition excludes the branches with ka0 at o ¼ 0; v ¼ 0: As everywhere else in this paper, o is
assumed to be real and therefore ðv;oÞ-parametrization is engaged. For future use, introduce
coefficient

k2 ¼
1

12r
m .N3m40, (17)

which determines the low-frequency asymptotics

v̂1ðoÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2koh
p

(18)



ARTICLE IN PRESS

A.L. Shuvalov et al. / Journal of Sound and Vibration 290 (2006) 1175–12011184
of the A
ðfreeÞ
0 flexural branch in an arbitrary anisotropic free plate (see Ref.[27]). For example, by

Eqs. (17) and (3),

k2 ¼
c11 � c212=c22

12r
, (19)

when the plate faces are parallel to a symmetry plane (cIJ in Eq. (19) are referred to the coordinate
axes X 1; X 2; X 3 taken along m; n; t; respectively). If in addition the sagittal plane m; nð Þ is also
parallel to a symmetry plane, then

ffiffiffiffiffi
12
p

k is the velocity v̂
ð0Þ
2 of the S

ðfreeÞ
0 wave at o ¼ 0.

Consider two different forms (12) and (13) of the dispersion equation, which are associated with
alternative options of the symmetric choice of fluid modes. The low-frequency approximation for
the onset of the flexural-type branches may be written as

rf

r
v5 þ ohv4 � 4k2ðohÞ3 ¼ 0, (20)

�
rf

r
v5 þ ohv4 � 4k2ðohÞ3 ¼ 0, (21)

with the following correspondence:

ð12Þ ) ð20Þ if v040; ð21Þ if v0o0, ð22Þ

ð13Þ ) ð20Þ if v0o0; ð21Þ if v040. ð23Þ

Note that merely linking the sign in front of the ‘fluid term’ in Eqs. (20) and (21) with the choice of
either decreasing or increasing modes would be incorrect—in fact, each of these equations
describe one of the choices for the forward-propagating waves and the opposite choice for the
backward-propagating waves.
Provided that the frequency is low enough to satisfyffiffiffiffiffiffi

oh

2k

r
�

rf

r
, (24)

the roots of Eqs. (20) and (21) are approximated, respectively, in the form

ð20Þ ) v ¼
4k2ðohÞ3

rf =r

" #1=5
exp i

2pn

5

� �
�

1

5

oh

rf =r
, ð25Þ

ð21Þ ) v ¼
4k2ðohÞ3

rf =r

" #1=5
exp i

p
5
þ
2pn

5

� �� �
þ

1

5

oh

rf =r
, ð26Þ

where n ¼ 0; 1; . . . ; 4 (Fig. 3). These two sets of roots are to be subjected to the conditions (22) and
(23) in order to partition them into the solutions of the dispersion Eqs. (12) and (13).
Consider the choice of decreasing fluid modes leading to Eq. (12). Applying Eq. (22) to Eqs. (25)

and (26) selects three pairs of roots,

v ¼ �
4k2ðohÞ3

rf =r

" #1=5
exp

ipn

5

� �
�

1

5

oh

rf =r
; n ¼ 0;�2; 2

8<
:

9=
;) � A; A1; An

1

� �
, (27)
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(26)
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*

*
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-A1
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A0

A1-A1

-A0

-A0

Fig. 3. The set of roots (25) and (26) in the complex v-plane and their correspondence to the solutions, presuming the

choice of either decreasing (filled discs) or increasing (blank discs) modes in the fluids. For transparency, all the roots

are placed on a circle by disregarding the small terms � 1
5

oh
rf =r

in Eqs. (25) and (26).
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where � signs account for propagation in the opposite directions m and �m; for definiteness, we
are further referring only to the waves propagating along m (v040, see Fig. 3). Evidently, the real
root with n ¼ 0 defines the onset vAðoÞ of the A branch. Two other complex-conjugated solutions,
following from Eq. (27) at n ¼ �2; describe the onset of the A1 and An

1 branches, which evolve
from the pure imaginary A

ðfreeÞ
1 and A

ðfreeÞ n
1 branches of the free plate. The notations may be

specified by attributing A1, say, to the velocity with a negative imaginary part. Thus, the A1 wave
(n ¼ �2; v00A1

o0) decays along m and involves the decreasing fluid modes, which carry the energy
towards the plate (Table 1, the lines 6, 2 for f 1; f 2), whereas the An

1 wave (n ¼ 2; v00
An

1
40) grows

along m and includes the decreasing fluid modes with the energy flux directed away from the plate
(see Table 1, the lines 5, 1 for f 1; f 2). In the typical case of small rf =r; obviously, the absolute
value of the imaginary part v00A1

ðoÞ increases smoothly, whereas the real part v0A1
ðoÞ with growing

frequency first remains small in the measure of rf =r and then soars up when o gets close (also in
the measure of rf =r) to the cutoff value.
Now let us deal with the choice of increasing fluid modes described by Eq. (13). Condition (23)

picks two remaining pairs of roots from Eqs. (25) and (26), namely,

v ¼ �
4k2ðohÞ3

rf =r

" #1=5
exp

ipn

5

� �
þ

1

5

oh

rf =r
; n ¼ �1; 1

8<
:

9=
;) � A0; An

0

� �
, (28)

see Fig. 3. The A0 wave (n ¼ �1; v00A0
o0) decays along m and includes the increasing fluid modes

outflowing from the plate (Table 1, lines 2, 6 for f 1; f 2), whereas its complex-conjugate An

0 (n ¼ 1)
grows along m and involves the increasing fluid modes carrying energy towards the plate (see
Table 1, lines 1, 5 for f 1; f 2). According to Eqs. (27) and (28), the real part v0A0

ðoÞ for extremely
small o lies below the real-valued A and A

ðfreeÞ
0 branches, but it certainly rises above these two very

soon with growing frequency.
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Compare the obtained solutions with the results inferred for the A and A0 branches in an
isotropic plate by Osborne and Hart [10]. The isotropic version of the leading term for the A
branch (Eq. (27) with n ¼ 0) coincides with the formula given in [10]. However, the asymptotics
assigned in Ref.[10] to the A0 branch corresponds in fact to the A1 branch (Eq. (27) with n ¼ �2),
whereas the actual A0 asymptotics (Eq. (28) with n ¼ �1) was missed. This oversight is due to the
fact that both asymptotics in Ref.[10] were derived from the same dispersion equation related to
the decreasing fluid modes.
For a numerical example we take an anisotropic plate represented by the ð11̄0Þ cut (n is parallel

to ½11̄0�) of cubic copper, choose the orientation ½110� for the propagation direction m, and assume
water (rf ¼ 1 g=cm3, cf ¼ 1:5mm=ms) as the loading fluid. The material parameters used for
copper are as follows: r ¼ 8:932 g=cm3 and c11 ¼ c22 ¼ 222; c33 ¼ 170; c12 ¼ 71; c13 ¼ c23 ¼ 123;
c44 ¼ c55 ¼ 75:5; c66 ¼ 23:5GPa in the reference basis X 1;X 2;X 3f g ¼ m; n; tf g. The low-frequency
onset of the flexural-type branches is compared with the analytical asymptotics in Fig. 4, and the
full extent of the branches is shown in Fig. 5. It is pertinent to note that the chief purpose of the
asymptotics (27) and (28) is an accurate account of the extreme low-frequency onset

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oh=2k

p
�

rf =r of the flexural branches, which decides their ramification. For a higher frequency,
these asymptotics should be replaced by a more appropriate approximation. For instance,
reasonable estimates for the A and A1 branches in the range rf =r�

ffiffiffiffiffiffiffiffiffiffiffi
oh=k

p
� 1 may be given
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Fig. 4. The exact low-frequency onset (solid lines) and corresponding asymptotics (27), (28) and (30) (dashed lines) of

the flexural-type branches, associated with various choices of the fluid modes, for the 110½ � propagation direction in the

11̄0
� 	

-cut copper plate immersed into water. For comparison, the flexural-type A
freeð Þ

0 ; A
freeð Þ

1 branches in the free plate

are also displayed. (a) Real v and real parts v0 ¼ Re v: (b) Imaginary parts v00 ¼ Im v. The ~A and ~A1 branches, which at

low o are very close to A
freeð Þ

0 and A
freeð Þ

1 , are displayed separately in the insets.
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Fig. 5. The family of flexural-type branches, associated with various choices of the fluid modes, for the

110½ � propagation direction in the 11̄0
� 	

-cut copper plate immersed into water. The notations for different branches

are explained on the plot. The S branch and the free-plate A
freeð Þ

0 ;A freeð Þ

1 branches are added for comparison. The main

plot shows real v and v0 ¼ Re v; the inset displays v00 ¼ Im v.
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by the relations

vAðoÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2koh
p

�
rfk

2r
; vA1

ðoÞ ¼
rf k

2r
� i

ffiffiffiffiffiffiffiffiffiffiffi
2koh
p

. (29)

The development of the A0 branch is complicated by the possible arrival of the real loop
(see Fig. 5), which is dealt with in the next section.
Thus, the low-frequency asymptotics of the free-plate dispersion equation, which is of the

fourth degree in v, transforms due to fluid loading into two different fifth degree equations (20)

and (21). Correspondingly, the two pairs of the free-plate branches, � A0; A1f gðfreeÞ; evolve into the
five pairs for the immersed plate, � A; A1; An

1

� �
and � A0; An

0

� �
; related to the choice of

decreasing and increasing fluid modes, respectively. As it has been pointed out, the dispersion
equation, associated with any one of the alternative choices, is a combination of Eqs. (20) and (21)
for inverse propagation directions (not that one of these equations stands for one choice and the
other equation stands for the other choice). This is why the distribution of the solutions between
the two choice options is uneven. The A

ðfreeÞ
0 branch transforms into the A or A0 branch for the

decreasing or increasing fluid modes, respectively, but the A
ðfreeÞ
1 ð¼ �A

ðfreeÞ n
1 ) branch, tending

towards the first thickness resonance, gives rise only to a single (complex) A1 branch and for the
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choice of, specifically, decreasing fluid modes. It is also noteworthy in this context that the often
encountered reference to A and A0 branches arrival as a split of A

ðfreeÞ
0 is not perfectly accurate,

for, it might be understood as if fluid loading perturbs a degenerate solution, which is certainly
not the case—in fact, the A

ðfreeÞ
0 branch transforms into either A or A0 for different perturbations,

described by two different forms of the dispersion equation.

3.2. The flexural-type branch for the antisymmetric choice of fluid modes

It is instructive to inspect the flexural-type solutions of the dispersion equation in form (16),
which corresponds to the choice of the increasing mode on one side of the plate and the decreasing
mode on the other (the antisymmetric choice). For such a setting, the pair of the free-plate
branches A

ðfreeÞ
0 and A

ðfreeÞ
1 transforms into two branches remaining, respectively, real and pure

imaginary. Denote them as ~A and ~A1: The real ~A branch may be spotted by means of the graphical
analysis of Eq. (16), similar to Fig. 2. It readily follows that the ~A branch is very close from below
to the A

freeð Þ

0 branch for small o; but then tends from above to the A branch, both having the same
high-frequency limit vSch. The ~A1 branch trails close to A

ðfreeÞ
1 . The low-frequency asymptotics for

~A and ~A1 branches are

v ~A ¼
ffiffiffiffiffiffiffiffiffiffiffi
2koh
p

1� s
rf

r

� �2

koh

" #
; v ~A1

¼ i
ffiffiffiffiffiffiffiffiffiffiffi
2koh
p

1þ s
rf

r

� �2

koh

" #
, (30)

where s ¼ rn.ðN1N
�1
3 NT

1 �N2Þn; see Eq. (3). If, for instance, the plane of plate faces and the
sagittal plane are both parallel to symmetry planes, then simply s�1 ¼ 12k2 ¼ v̂

ð0Þ 2
2 (see Eq. (19)).

The ~A and ~A1 branches are also displayed in Figs. 4 and 5, along with the branches related to the
symmetric choice of fluid modes. Note that the flexural-type branch with a real low-frequency
onset has been obtained numerically in Refs. [15,35] for the antisymmetric choice of fluid modes
applied to an isotropic plate in contact with two different fluids on the opposite sides.
4. The real-valued loop for the A0 branch at cf ovR

The sextic plate formalism lends a graphical way to unambiguously identify the origin of the
real-valued A0 loop. The underlying considerations are the same as those expounded in Fig. 2 for
the A and S branches. The only difference is that here we are concerned with the waves
Fig. 6. Graphical identification of the real-valued looping branches by spotting intersections (shaded circles) of the

plate-admittance curve(s) as functions of v at a fixed o (thin lines) and the curve �Y f ðvÞ (bold line), associated with the

choice of increasing fluid mode. Diagrams (a), (b) and (c1), taken for successively growing values of o; illustrate the

origin and closure of the A0 loop in the case cf ovR; diagram (c2) demonstrates the presence of the A0 and S0 open

arches for high o in the case vRocf ovt (positive curves in (c1;2) are omitted). The arrows attached to the free-plate

poles indicate their tendency with increasing o. Diagrams (d) and (e), describing the case vtocf , visualize the

changeover of the upper arm of the arches (first one herein): the intersection point moves from �Y f ðvÞ to Y f vð Þ; the
latter associated with the choice of decreasing fluid mode. No strict scale is observed, but the plots (d), (e) imply larger

rf =r than in (a)–(c1). Diagrams (f) and (g) explain a specific shape of the first arch for the same plate but fluid-loaded on

one side and free on the other at vRocf ovt (f) and vtocf (g).
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(d) (e)

(f) (g)

(b) (c2)

(c1)
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incorporating increasing fluid modes; hence, the dispersion equation is in form (13), and so it is
now the curve �Y f ðvÞ; whose intersections with the ‘plate curves’ Y

ðnÞ

1 ðvÞ � jY
ðnÞ

2 ðvÞj in constant-
frequency cuts indicate the real velocity solutions sought. The evolution of events with growing o
is elucidated in Fig. 6a–c1. For low frequency, the negative branch of Y

ðnÞ

1 � jY
ðnÞ

2 j on the right-

hand side of the first free-plate pole v̂1ðoÞ (that is, A
ðfreeÞ
0 ) is inversely proportional to oh; hence,

intersection with �Y f is impossible (Fig. 6a,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oh=2k

p
� rf =r). So the low-frequency onset of the

A0 velocity branch is always complex, in accordance with Eq. (28). As frequency increases,
the curve Y

ðnÞ

1 � jY
ðnÞ

2 j moves upwards and simultaneously to the right, pushed by the shifting
A
ðfreeÞ
0 -pole. Therefore, at a certain frequency the curves Y

ðnÞ

1 � jY
ðnÞ

2 j and �Y f may touch each
other (signifying confluence of the A0 and An

0 branches), and then, with further o growth, intersect
twice in between v̂1ðoÞ and cf (Fig. 6b). The ratio of the plate and fluid admittances is
proportional to rf =r; hence, the contact of Y

ðnÞ

1 � jY
ðnÞ

2 j and �Y f curves is stipulated by the
criterion that rf =r is less than a certain critical value,

rf =rpðrf =rÞcrit. (31)

Provided that cf is smaller than the Rayleigh velocity vR, the free-plate flexural pole keeps moving
to the right with growing o, so the two intersections merge into a tangency once more, and then

the curves Y
ðnÞ

1 � jY
ðnÞ

2 j and �Y f move apart each other (Fig. 6c1,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oh=2k

p
	 rf =r), meaning

that the A0 velocity branch becomes complex again before the A
ðfreeÞ
0 branch crosses cf .

Thus, loading any plate by a sufficiently light fluid with cfovR entails a real-valued A0 subsonic

loop, assuredly closed and bounded from below by the A
ðfreeÞ
0 branch. Fig. 6 shows that for

rf =r� 1 the lower arm of the loop stretches alongside the A
ðfreeÞ
0 branch, being above it in the

measure of rf =r, while the upper arm ascends rapidly at
ffiffiffiffiffiffiffiffiffiffiffi
oh=k

p

rf =r and then remains below

cf ; close to it in the measure of ðrf =rÞ
2. Increasing rf =r causes the loop to shrink and eventually

degenerate at a critical value ðrf =rÞcrit into a point ðv; oÞcrit. These observations are in
agreement with the computer simulations for the brass and aluminium isotropic immersed
plates performed in Refs.[11,12]. The graphical display of the sextic plate formalism provides
a clear evidence of the basic trends of the A0 loop for an arbitrary anisotropic plate
material.
It is of principal interest to evaluate the A0 real loop and particularly the condition for its

existence. An exact and explicit analytical formulation is certainly beyond reach. However, noting
that the loop is usually confined to the low-frequency domain enables approximate estimates.
Assuming oh=v� 1 allows approximating the dispersion equation (13), squared to lift the radicalffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2f

q
(the latter is not replaced by 1, as opposed to Eqs. (20) and (21)), in the form of the

fifth-order polynomial in v2;

ðr2 þ aÞx5 � ax4 � 2ab2x3 þ 2a2bx2
þ a3b2x� a3b2 ¼ 0;

x ¼ v2=c2f ; r ¼ rf =r; a ¼ ðohÞ2=c2f ; b ¼ 4k2=c2f :
(32)

Its two real roots, describing the pair of points on the upper and lower arms of the
real velocity loop for given o and rf =r, may be roughly evaluated, with reference to
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Eq. (18), as

ðvA0
Þ
2
1 ¼ 2koh 1þ

rf

r

ffiffiffiffiffiffi
2k
oh

r !
; ðvA0

Þ
2
2 ¼ c2f 1�

rf cf

roh

� �2
" #

. (33)

The estimate for the frequency values at the left and the right extreme points of the loop may be
suggested in the form

oðexÞleft;right ¼
c2f

4kh
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

ffiffiffi
2
p rf

r
k
cf

s !2

, (34)

whence follows the approximation for the critical density ratio, at which the loop closes up, and
for the coordinates of the corresponding degeneracy point,

rf

r

� �
crit

¼
cf

4
ffiffiffi
2
p

k
, (35a)

ðv; oÞcrit ¼
cfffiffiffi
2
p ;

c2f

4kh

 !
. (35b)

It is, however, noted that the foregoing estimates are stipulated by some compromising
simplifications and are therefore fairly loose. A more stringent procedure for evaluating the
critical parameters of the A0 loop at its termination point implies, firstly, demanding a zero
discriminant of Eq. (32), thereby eliminating x and arriving at the fifth-order polynomial in a that
defines the frequency at the left and the right extreme points of the loop as a function of r and b,
and, secondly, demanding a zero discriminant of the latter equation to obtain the critical density
ratio, which is then inserted back into the discriminants to recover the critical frequency and
velocity. Implementing this procedure with the aid of the symbolic-algebra package yields the
relations

rf

r

� �
crit

¼
cf

6
ffiffiffi
3
p

k
, (36a)

ðv; oÞcrit ¼
cfffiffiffi
2
p ;

c2f

4
ffiffiffi
3
p

kh

 !
, (36b)

which still have a remarkably simple form. It admits an especially lucid representation in the case
of an orthorhombic setting, when

ffiffiffiffiffi
12
p

k ¼ v̂
ð0Þ
2 , see Eq. (19).

Knowledge of the dependence of the critical density ratio ðrf =rÞcrit on cf is quite useful. Plotted
in the plane ðrf =r; cf Þ, this dependence identifies the domain rf =roðrf =rÞcrit, cf ovR of the A0

real loop existence for a given plate on its loading by various fluids. Fig. 7 presents a comparison
between the analytical approximations (35) and (36) of the critical parameters ðrf =rÞcrit, vcrit,
ðfhÞcrit (f ¼ o=2p) versus cf and their exact numerical evaluation for the case of ½110� propagation
direction in the ð11̄0Þ-cut copper plate subjected to fluid loading. It is seen that the ‘accurate low-
frequency’ estimate (36) is quite precise at relatively small cf (when the loop terminates at low
frequency), and that it only marginally deteriorates for cf approaching vR. Note that the exact



ARTICLE IN PRESS

-0.2

-0.15

-0.1

-0.05

0

0 0.025 0.05 0.075 0.1
fh

1

3

4

v"

1
2

5
6

0

0.05

0.1

0.15

0.2

0.25

0.3

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1.2 1.4 1.6
cf (mm/µs)

(fh)crit

(�f /� )crit

vcrit

1

2
3

4

fh
 (

M
H

z·
m

m
),

� f
 /

�

v 
(m

m
/µ

s)
 

5

6

1

Fig. 7. Critical parameters, corresponding to the termination of the A0 real loop, as a function of the speed of sound cf

in loading fluid for the 110½ � propagation direction in the immersed 11̄0
� 	

-cut copper plate. Solid lines are the exact

numerical curves, dashed and dotted lines are approximations (35) and (36), respectively. The inset demonstrates ‘the

healing’ of the dip on the attenuation curve once the loop disappears. It shows v00A0
versus frequency at a fixed

cf ¼ 1mm/ms and the value rf =r; which is less (curve 1), equal (curve 2) and greater (curves 3–6) than ðrf =rÞcrit (the
probe values rf =r are indicated by the correspondingly numbered squares on the straight line).
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curves for ðrf =rÞcrit and ðfhÞcrit appear to be bounded by Eq. (36) on one side and by the ‘loose’
estimate (35) on the other, for which reason the latter may also be helpful.
As regards application of estimate (36a) for verifying criterion (31) for the A0-loop existence in

plates of various materials, this may be demonstrated by appealing to the plate–fluid
combinations, for which the absence or presence of the loop has been tested numerically in
Ref.[16], see Table 3 there (note that its categorization of the air-loaded plates with an extremely
small density ratio as not having the loop is indeed an oversight). In the cases of the loop existence
(entries 1–6 tabulated in Ref.[16]), the actual value of rf =r is below the critical threshold ðrf =rÞcrit
approximated by Eq. (36a) except on one occasion (entry 1), for which the actual rf =r � 0:118 is
only fractionally greater than the critical value 0:114 given by Eq. (36a). Bearing in mind that the
latter tends to slightly underestimate the exact ðrf =rÞcrit (the more so at higher cf ; see Fig. 7), the
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loop presence for this entry may be said to be also predicted by Eq. (36a) with regard for the
‘confidence interval’. For all the plate-fluid combinations used in Ref.[16] to exemplify the loop
non-existence (entries 7–11), the actual value of rf =r markedly exceeds the critical-threshold
estimate (36a), thus endorsing its reliability.
The aforementioned examples from Ref.[16] are concerned with isotropic plates. It is therefore

pertinent to point out that the approximate evaluation of the critical parameters of the A0 loop is
valid for an arbitrary anisotropic plate. The derivation reveals that the leading dependence of
ðrf =rÞcrit on the plate material elastic properties is through a single parameter k. Hence, the
surface, defined in the 3D ðrf =r; cf ;kÞ-space by the conjunction of Eq. (36a) and the inequality
cf ovR, can serve as an approximate ‘phase diagram’ of the A0 loop existence for arbitrary plates
and loading fluids. The greater the cf and the smaller the k, the less accurate the low-frequency
assumption implied on evaluating the loop termination by Eq. (36a), and hence the larger the
error of approximation (underestimation) of the exact ðrf =rÞcrit: Nevertheless, the derived
analytical benchmark with its very simple explicit form appears worthwhile. Thus, with reference
to the practically common case of water as a loading fluid, the loop existence may be expected for
dense metal plates and also for ‘slow directions’ in comparatively soft fibre-composite plates
(propagation across the fibres); whereas it is less likely for the latter type of plates when the
propagation direction is ‘fast’ (along the fibres).
Note in conclusion that exactly the same existence considerations for the A0 loop apply to the

one-sided fluid loading, except that the estimate for ðrf =rÞcrit in this case is two times greater as
compared to Eqs. (35a) and (36a).
5. The locus of real loops for vRocf

If the Rayleigh velocity vR is less than cf ; the subsonic velocity spectrum may acquire various
types of real-valued looping branches. Two basically dissimilar patterns, that arise depending on
whether cf 4vRð Þ is less or greater than the bulk-wave threshold in the plate, can be identified for
an arbitrary anisotropic plate without any explicit calculations, resorting once again to the
graphical display of the sextic plate formalism. To illuminate the principal idea, we will straighten
its exposition by referring basically (unless otherwise indicated) to the case of SH-wave
uncoupling. With a view to facilitate a link to the numerical diagrams for isotropic plates, the
bulk-wave threshold, generally related to the in-plane or out-of-plane lateral wave, is represented
below by the transverse-wave velocity vt. Also, a typical situation is assumed when the least zero

~v1ðoÞ of the curves Y
ðnÞ

1 � jY
ðnÞ

2 j remains greater than vt at any high o, so that their joint high-

frequency limit taken at vt is negative: Y
ðnÞ

1 � jY
ðnÞ

2 j


 �
vt;o
! Y ðnÞ1 vtð Þo0, thus barring the existence

of the second subsonic Scholte wave [34,36].

5.1. The case vRocf ovt

Consider the choice of increasing fluid modes (Eq. (13)). The topology of the A0 real loop origin
in the case vRocf is basically the same as at cf ovR (Fig. 6a,b). However, now the free-plate pole,
corresponding to the A

freeð Þ

0 branch, remains ‘under’ the curve �Y f ðvÞ at a high frequency anyhow.
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As a consequence, given that the relative difference between cf and vR is not too small compared
to rf =r (see below), the pair of intersections of the plate and fluid curves persists up to o!1
(Fig. 6c2), meaning that the locus of A0 real velocities forms an open arch lying above A

freeð Þ

0 . It
may emerge at a markedly higher frequency than in the case cf ovR, and hence is allowed for rf =r

well exceeding the critical value rf =r

 �

crit
conditioning the loop at cfovR:Moreover, once the A0

arch arises, then for higher o the next curve Y
ðnÞ

1 � jY
nð Þ

2 j; dragged along by the pole S
freeð Þ

0 ! vR;
also comes to intersect with the curve �Y f ðvÞ (Fig. 6c2). Thus, the second arch of real solutions

appears, lying strictly above the S
freeð Þ

0 branch after the latter enters the subsonic interval.
Evidently, this arch is not related to the flexural-type family. Provided rf =r is small enough so

that the real part of the S0 leaky-wave velocity branch bends downwards alongside S
freeð Þ

0 ; it is then
this branch that coalesces with its complex conjugate to give rise to the second arch, which may be
therefore labelled S0.
Two ‘plate curves’, intersecting with �Y f ðvÞ in Fig. 6c2; tend exponentially to the same

curve Y nð Þ
1 ðvÞ at o!1 and vpvt, so the lower arms of the two arches and their upper arms

share the high-frequency limits vð1Þ1 and v 2ð Þ
1 , respectively, which are approximated for small

enough rf =r as

vð1Þ1 ¼ vR 1þ
rf

r
aR

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2R=c2f

q
0
B@

1
CA; v 2ð Þ

1 ¼ cf 1�
1

2
r2f c2f Y ðnÞ1 cf

� 	h i2� 
, (37)

with aR ¼ �2rvR d 1=Y ðnÞ1
� 	

=dv
� ��1

vR
. They describe the interfacial waves, that incorporate the

modes decreasing into the solid half-space along with the mode increasing into the fluid (as
opposed to the Scholte wave which involves the decreasing fluid mode). By Eq. (37), vð1Þ1 exceeds
vR in the measure of rf =r; while v 2ð Þ

1 is less than cf in the measure of ðrf =rÞ
2. Evidently, the

inequality

vð1Þ1ov 2ð Þ
1 � cf at rf =r


 �2
� 1

� �
(38)

ensures the existence of the A0 and S0 open arches. This condition means that the relative distance
between vR and cf ovtð Þ must be large enough to accommodate v 1ð Þ

1 and v 2ð Þ
1 : In other words, cf =vR

and rf =r are the two competitive parameters, whose interrelation decides the open arches
formation. If Eq. (38) is not satisfied, then the A0 and S0 branches tend at o!1 to the complex-
valued limit, signalling that either the real locus consists of closed loop(s) or, more probably, the
A0 branch is complex throughout.
The condition vRocf ovt does not affect the topology of the A and S branches, associated with

the decreasing fluid modes (Eq. (12)), except that their high-frequency Scholte limit vSch; given at
cf ovR by the same relation as Eq. (37)2, now shifts downwards to

vSch ¼ vR 1�
rf

r
aR

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2R=c2f

q
0
B@

1
CA, (39)
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see Refs. [34,28] (the latter gave Eq. (39) with 1
2
repositioned into the definition of aR; the

motivation for the present modification is made clear in Ref. [29]). The low-frequency origin of the
S branch at cf is stipulated by the condition cf ov̂

0ð Þ
2 .

Regarding the antisymmetric choice of fluid modes at vRocf ovt, a graphical analysis of
Eq. (16) readily shows that it may also yield a real-valued arch. Denote it, say, by ~S. This arch
conforms to the same existence considerations and, obviously, has the same high-frequency limits
vð1Þ1 and v 2ð Þ

1 ; as the aforementioned A0 and S0 arches for the choice of increasing fluid modes. It is
similar in shape to the S0 arch, but indeed has a different low-frequency ‘precursor’—for a light
fluid loading, the ~S arch is connected by the complex-valued segment with the supersonic arch
R ¼ 0 of zero reflection, in agreement with the intrinsic meaning of the antisymmetric choice of
fluid modes.
A numerically calculated subsonic spectrum exemplifying the case vRocfovt is presented in

Fig. 8 (pure imaginary ~A1 and A
freeð Þ

1 branches are omitted). The choice of materials, the golden
plate (r ¼ 19:3 g/cm3; vl ¼ 3:275; vt ¼ 1:215; vR ¼ 1:148 mm/ms) immersed into alcohol
(rf ¼ 0:8g/cm3; cf ¼ 1:21mm/ms), has been made for the sake of enabling a distinct graphical
0.05

0.1

0.15

0.2

0.25

0.3

0 0.001 0.002 0.003 0.004 0.005
fh

A0 (free), Ã

A

A1

A0v,
 v

'

1

1.04

1.08

1.12

1.16

1.2

1.24

0 0.5 1 1.5 2
fh (MHz·mm)

cf

vR

vSch

vt

v(2)

v(1)

A0

A0

A

S

A0 (free)
S0 (free)

A1

v,
 v

' (
m

m
/µ

s)

Ã

R=0

S
~

S0

real decreasing

real increasing

complex increasing

complex decreasing

free plate

real, antisymmetric choice
complex, antisymmetric choice

∞

∞

Fig. 8. The real and (real parts of) complex flexural-type branches, and the real-valued arches at various choices of the

fluid modes for the golden plate in alcohol. The inset shows opening of the A0 real arch at low frequency. The free-plate

branches are added as the reference.



ARTICLE IN PRESS

A.L. Shuvalov et al. / Journal of Sound and Vibration 290 (2006) 1175–12011196
manifestation of the events in between cf and vR: Apart from the desirable relation of the
velocities, this combination is characterized by markedly small rf =r; which fulfills (38) and thus
endorses the presence of the real-valued open arches. In the present case, the estimate of the lower
high-frequency limit vð1Þ1 ; specified for an isotropic plate as

vð1Þ1 ¼ vR 1þ
rf

r
vR=vt

� 	4
vR df R=dv
� 	

vR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2R=v2l
1� v2R=c2f

s" #
(40)

(f RðvÞ is the Rayleigh function), yields the value which lies well below v 2ð Þ
1 � cf : Note that Eq. (40)

is in quantitative agreement with the numerical calculation [25] for the interface wave solutions in
the fluid-loaded half-space of a gold–silver alloy with variable parameters, which demonstrates
that the leaky-Rayleigh complex value vlR transforms into two real values vð1Þ1 and v 2ð Þ

1 once vR

becomes sufficiently less than cf to satisfy the inequality (38). The case of the Plexiglas half-space
loaded by the methanol solution with varying rf and cf [24] may be adduced as an example of the
opposite situation, when the difference between vt and vR is too small in comparison with rf =r to
transform vlR into vð1Þ1 ; v 2ð Þ

1 with cf decreasing from vt to vR:
5.2. The case vtocf

Usually the velocities vR and vt are fairly close and so having a value of cf in between them is a
rather special setting. Considerably more common case is vtocf . It is typical for relatively soft
plate materials. However, it seems more appropriate to emphasize the ‘slow’ plate choice. The
basic feature of this case, namely, the occurrence of infinitely repeated real-valued loops with
changeover points, is a topological invariant stipulated solely by the velocity relation vtocf ;
which necessitates the upper continuum of the free-plate (real) branches to slip under cf as they
tend at high o to vt (in the measure of khð Þ�2; see Ref. [37]).
Assuming the symmetric choice of fluid modes, let us explain the loops formation by means of

the graphical display in Fig. 6d and e, which refers to the simple situation of the SH-branch
uncoupling and is also scaled for not so small density ratio rf =r in order to match the subsequent
numerical example. The A0 real arch arrives in the same fashion as before (Fig. 6d), but now, at
vtocf ; it is ensured for any value of rf =r which affects only its shape. With increasing frequency,

the least zero point ~v1ðoÞ of the plate-admittance curves Y
ðnÞ

1 � jY
ðnÞ

2 j is pushed towards vt by the

A
freeð Þ

1 -pole (corresponding to the first branch of the free-plate upper continuum), so this zero
point meets cf and then becomes less than cf : As a consequence, one of the intersections of the
‘plate curve’ with �Y f reaches cf and is then superseded by the intersection with Y f (Fig. 6e). This
changeover means that the ascending upper arm of the A0 arch of real roots of Eq. (13), involving
the increasing fluid modes, touches cf and then transforms into the descending arm of real
solutions of Eq. (12), involving the decreasing fluid modes (the same, in fact, occurs at vRocf ovt

as well, if the second Scholte interfacial solution does exist [28]). With further growing frequency,
the poles of Y

ðnÞ

1 � jY
ðnÞ

2 j; corresponding to the next free-plate branches of the upper continuum,
also approach vt and thereby entail the successive arrival of narrowing real-valued arches with a
changeover point at cf each, following with approximately the same frequency step. It is seen that,
given that o is unlimited, this infinite sequence occurs for any rf =r; as soon as cf is greater than vt.
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At o!1; all the upper arms, associated with the decreasing fluid modes, tend to vt: This
continuum is certainly tantamount to the Sezawa family of branches in a solid substrate with
‘slow’ coating. The lower arms do the same, except maybe the first ones. The assessment as to
which is the case can be made by checking the sign of the inequality

t �
Y ðnÞ1 vtð Þ

�Y f vtð Þ
_1, (41)

where t is proportional to rf =r and decreases with growing cf : Once t41, the value Y nð Þ
1 vtð Þ lies

above �Y f vtð Þ and the same should be expected for the monotonically increasing curves Y ðnÞ1 ðvÞ
and �Y f vð Þ anywhere below vt: In this case all the lower arms tend to vt; hence, all the arches are
asymptotically closed at o!1 and are most likely to be wholly bounded by vt. The inequality
to1 necessitates at least one intersection of Y ðnÞ1 ðvÞ and �Y f vð Þ, which yields the high-frequency
limit vð1Þ1ovt (see Eq. (37)) for the lower arms of the first two arches. Their upper arms tend to vt;
so those arches stay open at o!1: The two spectral configurations, one with a single high-
frequency limit vt and the other with two limits vt and vð1Þ1 (vRov 1ð Þ

1ovt), represent most generic
patterns at the densities or/and velocities variation. Both imply that the A0 branch does not have
the leaky-Rayleigh limit vlR with v0lRovt; v00lRo0:
In principle, more elaborate situations are possible, when t41 or to1 admit, respectively, two

or three intersections of Y nð Þ
1 ðvÞ and �Y f ðvÞ; thereby indicating two or three distinct high-frequency

limits below vt for the first pairs of arms. Corresponding spectral configurations enable the
transitions, say, between the two above-mentioned generic patterns on continuously decreasing

rf =r; or from the pattern with two limits vð1Þ1 ; v 2ð Þ
1 at vRocf ovt (Fig. 8) to that with one limit

vð1Þ1ovt on cf surpassing vt. However, these ‘transitional’ configurations occur in the narrow ranges
of subtle relations between the densities and velocities (e.g., see Ref. [25]) and are therefore
relatively unlikely to be encountered in practice. It should also be noted that introducing
anisotropy breaks up the S branch and unfolds ‘the former’ SH branch vt ¼ const: into two
branches with the common onset at v̂

0ð Þ
2 ocf , one of them associated with the decreasing fluid

modes and decreasing to vSch (instead of the former S branch) and the other one tending at o!1
to the bulk-wave threshold. At the same time, these changes do not affect the two generic patterns
of the looping branches, which are thus stable with respect to anisotropy perturbation as well.
In view of the recently reported results for the water-loaded Plexiglas, fulfilling the case vtocf

[23,24,26], we consider this combination of media for a numerical example. The material
parameters assumed for Plexiglas are the same as were used in Ref. [26] (r ¼ 1:18 g/cm3;
vl ¼ 2:5; vt ¼ 1:2; vR ¼ 1:12, mm/ms).The spectrum presented in Fig. 9 complements [26] by
exhibiting a sequence of real-valued arches, which swarm the subsonic spectrum with growing o.
It is instructive to note that because rf =r is not small, the S0 leaky wave branch with growing o
becomes fairly remote from S

freeð Þ

0 and is not involved in the formation of the second arch, which,
by contrast to Fig. 8, originates from another complex symmetric branch starting off from zero v
and o (but with k ¼ o=va0; as it is seen from its linear onset, so this is not a flexural-type
branch). The isotropic value

tiso ¼
rf

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2t =v2l
1� v2t =c2f

s
(42)
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in the case of Plexiglas is greater than 1; which is why all the arches lie above vt: At the same time,
e.g., for the water-loaded polyvinyl chloride (PVC), also realizing the case vtocf ; it is tisoo1
(that is, r4rc in terms of Ref. [23]), so the subsonic spectrum of the PVC plate immersed
into water is to fall under the other pattern, with the lower arms of the two first arches tending
to vð1Þ1ovt: Note that the normal admittance of the solid half-space Y ðnÞ1 ðvÞ; representing a
high-frequency limit of Y

ðnÞ

1 � jY
ðnÞ

2 j at vpvt, is constructed from the partial modes decreasing
into the solid depth; therefore the fluid–solid interfacial solution mentioned in Refs. [23,25],
which increases into the solid, cannot arise as a limit of the plate theory and so does not
appear in the present considerations. Regarding a drastically different shape of specifically the
first arch, observed in Ref. [26] for the air–Plexiglas–fluid case, it becomes evident as a general
feature from graphical solution (Fig. 6f and g) of the dispersion equation for the plate loaded
by a fluid on one side and free on the other, for which case the ‘plate contribution’ is given by
Y
ðnÞ

1 only.
Let us also mention the array of solutions, arising at vtocf for the antisymmetric choice

of fluid modes. A graphical analysis of Eq. (16) reveals that its solutions complement each
of the two generic patterns of the real-valued arches, related to symmetric choice, by the
infinite sequence of the real curves, tending at high frequency to the same limit(s) as the arches,
that is, to vt at t41 or to vt and vð1Þ1 at to1. It is significant that these curves continue into the
supersonic domain, where they are the branches of zero reflection, and the points of their
intersection with cf must exactly coincide with the changeover points of the arches for the
symmetric choice (see Fig. 9).
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6. Conclusions

The subsonic spectrum of generally anisotropic fluid-loaded plates has been studied with two
basic objectives. First, the ramification of the flexural-type family, associated with different
choices of the partial mode in the fluid, has been traced by way of deriving and analysing the
explicit low-frequency asymptotics derived. It is clarified that the real A and complex A0 branches,
related to the choice of either decreasing or increasing mode into the fluid depth on both sides of
the plate, occur as the solutions of two different forms of the dispersion equation, not as a split of
the A

freeð Þ

0 branch of the free plate. Disregarding this implication is fraught with misinterpretations
(see example in Section 3). Another flexural-type complex branch in the immersed-plate spectrum,
the A1 branch, evolves from the (pure imaginary) free-plate A

freeð Þ

1 branch tending to the first
thickness resonance. Remarkably, the A1 branch appears only if the decreasing fluid mode is
chosen. It is noted that the ‘antisymmetric choice’ of fluid modes—decreasing into the fluid on one
side of the plate and increasing on the other—brings about two more flexural-type branches, real
~A and pure imaginary ~A1; which stem from A

freeð Þ

0 and A
freeð Þ

1 , respectively. Altogether, this set of
branches represents the flexural-type family for an arbitrary immersed plate. The supersonic
features of the A0 and A1 branches are discussed, among other topics, in a companion paper [29]
devoted to the spectrum of leaky waves.
The second target of the study has been the phenomenon of real-valued looping branches,

associated with the choice of increasing modes in fluids. This endeavour is motivated by numerical
findings for isotropic plates, broadly discussed in the literature, and also by the recent
experimental observation of the looping branch for a Plexiglas plate in water [26]. A general
insight into the origin and shape of the real-valued branches for any anisotropic plate can be
readily gained using the graphical display of the sextic plate formalism. It visualizes the real
velocity solutions v ðoÞ at any o as the intersections of the fluid-admittance curve (its sign
accounts for the choice of fluid modes) with the pair of plate-admittance curves, which are
endowed with certain topologically invariant features. By these means, three settings leading to
the essentially different subsonic spectral configurations have been envisaged. At cf ovR and rf =r
less than the critical value ðrf =rÞcrit estimated by Eq. (36a), the A0 branch contains a closed real

loop within the sector between cf and the A
freeð Þ

0 branch. If cf lies above vR but below the bulk-

wave threshold for the plate, while rf =r is less than a certain bound exceeding ðrf =rÞcrit inasmuch
as cf exceeds vR; then the A0 real loop becomes an open arch and is joined by another, S0 real
arch, which appears above the S

freeð Þ

0 branch after the latter slips under cf : These two arches share
the high-frequency limits v 1;2ð Þ

1 of their upper and lower arms ðvRovð1;2Þ1 ocf Þ. Once cf is greater
than the bulk-wave threshold (say, vt), the subsonic spectrum for any rf =r contains the infinite
sequence of the progressively narrowing real-valued looping branches, following one after another
with approximately the same frequency step. The upper arm of each looping branch reaches cf

and undergoes a changeover into a descending curve of solutions that involve the decreasing fluid
modes. Generally, either both arms of all the arches lie above vt approaching it at o!1; or else
the lower arms of the two first arches are singled out by tending to vð1Þ1ovt: The analytical
conditions and estimates for the aforementioned patterns of the loop(s) have been derived for
arbitrary anisotropic plates and then exemplified, in a more explicit form, for isotropic plates. The
real-valued locus of subsonic solutions, arising at vRocf for the ‘antisymmetric choice’ of fluid
modes, has also been considered and a link to the zero-reflection supersonic curves pointed out. A
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clear picture of the plane-wave looping branches being in hand enables us to move on to the
problem with a source, in order to explore the possible impact of those branches on the response
function and assess prospects for its experimental observation.
It is noted that the basic conclusions of this paper apply, with appropriate modifications,

to inhomogeneous plates with arbitrary variation of material properties across the plate, see
Ref. [38].
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[14] J.-P. Sessarego, J. Sagéloli, C. Gazanhes, H. Überall, Two Scholte-Stoneley waves on doubly fluid-loaded plates

and shells, Journal of the Acoustical Society of America 101 (1997) 135–142.
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[35] X.L. Bao, H. Franklin, P.K. Raju, H. Überall, Fluid-borne and Lamb-type waves on elastic plates in contact with

two different fluids, Journal of the Acoustical Society of America 102 (1997) 1246–1248.

[36] L. Wang, J. Lothe, Existence of second slip waves in anisotropic elastic media, Wave Motion 18 (1993) 79–99.

[37] V.I. Alshits, M. Deschamps, G.A. Maugin, Elastic waves in anisotropic plates: short-wavelength asymptotics of

the dispersion branches vnðkÞ, Wave Motion 37 (2003) 273–292.

[38] A.L. Shuvalov, O. Poncelet, M. Deschamps, General formalism for plane guided waves in transversely

inhomogeneous anisotropic plates, Wave Motion 40 (2004) 413–426

A.L. Shuvalov, O. Poncelet, C. Baron, M. Deschamps, Long-wavelength dispersion of acoustic waves in

transversely inhomogeneous anisotropic plates, Wave Motion 42 (2005) 367–382.


	Analysis of the dispersion spectrum of fluid-loaded anisotropic plates: flexural-type branches and real-valued loops
	Introduction
	Theoretical background
	The nomenclature and low-frequency onset of the flexural-type family
	The flexural-type branches for the symmetric choice of fluid modes
	The flexural-type branch for the antisymmetric choice of fluid modes

	The real-valued loop for the A0 branch at cf vR
	The locus of real loops for vR cf
	The case vR cf vt
	The case vt cf

	Conclusions
	Acknowledgements
	References


